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Abstract. Local alignment of a conduction electron’s spin with core spins caused by strong
ferromagnetic coupling imposes a severe restriction on the Hilbert space. This is incorporated in
a representation in which the electron is a composite object. Within a mean-field approximation
we find a transition from a ferromagnetic metal to a paramagnetic state at a temperatureTc � TF ,
the Fermi temperature, i.e., there is a separation of energy scales. The electron Green function
exhibits a two-fluid character: a Fermi liquid component associated with the ordered spins which
disappears aboveTc, and an incoherent component with disordered spins which breaks particle-
hole symmetry. Implications for manganites, which exhibit very large magnetoresistance, are
discussed.

Recent discovery of very large magnetoresistance in La1−xCaxMnO3 (and other manganites)
[1, 2, 3] has revived interest in the double-exchange model [4–7]. Approximately in the
range 0.2 < x < 0.4, the low-temperature phase of the manganites is a ferromagnetic metal.
At a critical temperatureTc, there is a transition to a paramagnetic phase which appears to
be insulating. The large increase in resistivity atTc and the enormous magnetoresistance
are linked to the transition and implies extreme sensitivity to external magnetic fields. The
important physical effects are believed to originate from the d orbitals of the manganese ions
which occupy the cubic sites of the perovskite structure. TheEg orbitals form a conduction
band containing 1− x electrons per site. The electron strongly interacts ferromagnetically
via the Hund’s rule mechanism with theS = 3/2 core spin formed from theTg orbitals.
We thus consider the ferromagnetic Kondo lattice Hamiltonian given by

H = −
∑
ijσ

tij c
†
iσ cjσ − JH

∑
i

Si · si . (1)

Hereciσ destroys anEg electron at sitei and the first term is the usual nearest-neighbour
hopping Hamiltonian withtij = t . The second term describes the Hund’s rule coupling
between the core spinSi and the conduction electron spin densitysi . The nominal two-
fold degeneracy of theEg orbitals could in fact be lifted by a coupling to the lattice. For
the most part we ignore the degeneracy, its effect will be discussed later.

In the largeJH limit, the conduction-electron spin adiabatically follows the core spins.
As elucidated by Anderson and Hasegawa [5], this induces a ferromagnetic correlation
between neighbouring spins in order to facilitate coherent propagation. However, the forced
alignment also removes a large part of the Hilbert space since at each site, doubly-occupied
and theantiparallel singly-occupied states are both projected out. More precisely, an
electron combines with the core spin to form two manifolds of total spinS ± 1

2 with
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energies− 1
2JHS and+ 1

2JH (S + 1), respectively. AsJH → ∞, the S − 1
2 and the doubly

occupied sectors are projected out. This restriction is far more stringent than that in the
infinite U Hubbard model where only double occupancy is forbidden, and dominates the
physics.

We derive an exact representation in which spins are treated as Bose fields that are
coupled to spinless charge fermions so that the physical electron is a composite object.
Within a mean-field (MF) approximation we find a transition from a ferromagnetic metallic
state to a paramagnetic state with reasonable values forTc � TF , i.e., there is a separation
of energy scales. We show, analytically, that the MF electron Green function exhibits
a two-fluid character: a Fermi liquid component associated with the ferromagnetically
ordered spin configuration, and an incoherent component associated with the disordered
spin configurations which breaks particle-hole symmetry. With increasing temperature (T ),
there is a transfer of spectral weight to the latter, until atTc the Fermi liquid component
disappears.

Functional integral representation.Consider first the on-site problem with a classicalSi ,
pointing along some arbitrary direction. Letfi and gi be operators that destroy single
electrons with spins parallel and antiparallel toSi , respectively. Thenciσ are given by
linear combinations:

ciσ = 1√
2S

[biσ fi + sgn(σ )b∗
i,−σ gi ]

wherebiσ = riσ eiφiσ are complex numbers with
∑

σ b∗
iσ biσ = 2S. If Si is expressed as

(S, θ, φ) in spherical coordinates, then we can choose

ri↑ =
√

2S cos
θi

2
ri↓ =

√
2S sin

θi

2
φi = φi↓ − φi↑.

In the quantum case,biσ becomes a time-dependent Bose field. Then it is convenient to
use functional integral techniques [7]. Note that the core spin variables can be expressed
as: S+

i = b∗
i↑bi↓, Sz

i = 1
2(b∗

i↑bi↑ − b∗
i↓bi↓). This is nothing but the exact Schwinger boson

representation of the core spin [8, 9].
Clearly, the representation is valid for allJH . Here we focus on theJH → ∞

limit. Then we can ignore the upper (antiparallel) level (i.e. terms containingg) so that:
ciσ = 1√

2S
biσ fi whereciσ andfi are Grassman fields. The partition function can be written

as a functional integral with an action given by

A =
∫ β

0
dτ

[ ∑
iσ

(
1 + f ∗

i fi

2S

)
b∗

iσ

∂biσ

∂τ
+

(
f ∗

i

∂fi

∂τ
+ µf f ∗

i fi

)
+ 1

2S

∑
ijσ

tij b
∗
iσ bjσ f ∗

i fj

]
(2)

where µf is the chemical potential and the integrals over the Bose fields are to be
done subject to constraints

∑
σ b∗

iσ biσ = 2S. The action is invariant under the gauge
transformation:fj → fj eiψj ; bjσ → bjσ e−iψj . Hence, one of the Bose fields, saybj↑, can
be chosen to be real. Then, written in terms of the polar variables(S, θ, φ), the action
becomes identical to the one derived by Milliset al [7].

In essence, the electron has become a composite object. Its charge (densityni = f ∗
i fi)

is carried by aspinlessfermion fieldf , and its spin (densitysi = (f ∗
i fi/2S)Si) is wedded to

the core spin and is carried by the Bose fields. The double-exchange mechanism is explicit
in the last term in the action (2) which describes hopping of a spinless charge characterized
by a fluctuating hopping parametertBij /S, whereBij ≡ 1

2

∑
σ b∗

iσ bjσ essentially measures
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the nearest-neighbour ferromagnetic correlation and has a magnitude

|Bij | = S

[
cos2

(
θi − θj

2

)
− sinθi sinθj sin2

(
φi − φj

2

)] 1
2

.

This is maximum (=S) for ferromagnetic alignment:θi = θj ; φi = φj . Note the similarity
with the infiniteU Hubbard model. Physics is quite different, however [10]. In the present
case,the charge field is free, i.e., not enslaved to the spin-field by a projective constraint.
The representation is therefore natural since there is no freedom of choice of statistics (i.e.,
no slave boson).

Mean-field theory. We treat the constraints on the Bose fields on the average via a
Lagrange multiplier3. A Hartree–Fock decomposition then yields actions that are quadratic
in the charge and spin-fields:AMF = Af + Ab + const. The factor(1 + (f ∗

i fi/2S)) can
be absorbed by shiftingµf and rescaling the Bose fields so that they correspond to a spin
of renormalized magnitude:S → SR = Sζ = S + (1 − x/2). This is just the average total
spin at a site with 1− x electrons. The mean-field actions are then given by

Ab =
∫ β

0
dτ

[ ∑
iσ

(
b∗

iσ

∂biσ

∂τ
− 3b∗

iσ biσ

)
+ D

2SR

∑
ijσ

tij b
∗
iσ bjσ

]
(3)

Af =
∫ β

0
dτ

[ ∑
i

(
f ∗

i

∂fi

∂τ
+ µf f ∗

i fi

)
+ B

SR

∑
ijσ

tij f
∗
i fj

]
(4)

whereD = 〈f ∗
i fj 〉 is the average ‘kinetic energy’ of charge andB = 〈Bij 〉 is the average

value of short-range ferromagnetic correlation. Thus, although the bare problem has a single
energy scale (the bare bandwidthW = 12t), the propagation of charge and spin is governed
by distinct energy scales as characterized by the hopping parameterstf = tB/SR and
tb = tD/2SR, respectively. These scales depend onT , and their determination is important
from an experimental standpoint sinceW can be in the eV range, the experimentalTc is
only a few hundred degrees [1–3].

The fermion spectrum is simply a cosine bandεf (k) = −2tf (coskx + cosky + coskz).
The parameterB is maximum (=SR) in the ferromagnetic state and decreases with increasing
T , but must remain finite atTc since it measures onlyshort-rangemagnetic correlations.
Hence, we conclude that (1) charge fermions are itinerant both below and above the
ferromagnetic transition and (2) the charge bandwidth,Wf = WB/SR, equals the bare
bandwidthW at T = 0, but decreases with increasingT as B decreases. (3) For fixed
SR, there is a symmetry aboutx = 0.5 (quarter filling), so we can restrict our attention
to x < 0.5. In this regime the Fermi surface is hole-like. To determineTc, we need to
computeD which determines the Bose parametertb. Forx not too large, we use a quadratic
approximation for the hole spectrum to obtain

D = x − x(6π2x)2/3

10

{
1 + 5π2

12
(

kT

tf εF

)2

}
whereεF = (6π2x)2/3 is the hole Fermi energy for a band withtf = 1. ThusD is quite
small, depends only onx at T = 0. For x = 0.2, D ∼ 0.1 at T = 0, and decreases with
increasingT . Therefore,tb/tf = D/(2B) ∼ D/(2SR) � 1. Hence,Tc must be much
smaller than the fermion bandwidth.

The Bose Hartree–Fock problem is identical to that for a spin-SR Heisenberg
ferromagnet, characterized by atemperature-dependentexchange constantJ = tD/(2BSR).
The Bose spectrum isωk = 6tbγk, with γk = 1 − 1

3(coskx + cosky + coskz). Long-range
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ferromagnetic order (along thex direction) appears through a Bose condensation in the
k = 0 mode, with the magnetization (condensate density) given by

m = SR −
∫

d3k

(2π)3

1

eβ(ωk+3) − 1
. (5)

To obtainB we only need to replace 1 byγk in the numerator. The equations have been
discussed in detail in [9]. Briefly, in the ordered regime,3 = 0 andm > 0. The ground-
state is ferromagnetic since atT = 0 both integrals vanish givingm = SR and B = SR.
By expanding the Bose spectrum we obtain the correct spin-wave theory results at low
temperatures:m = SR − const T

3
2 and B = SR − const T

5
2 . Above Tc, m = 0, and

3 ∝ ξ−2 > 0, whereξ is the correlation length over which spins are ordered. These results
depend only on the spin-wave spectrum and dimensionality, and are thus expected to be
valid.

We have solved the fermion–boson self-consistency problem numerically. The relevant
temperature scale isTc. Figure 1 shows, 2kTc/W , as a function of doping. Also shown are
the charge fermion bandwidthWf /W = tf /t , and 2µ/W , evaluated atTc, whereµ is the
chemical potential for holes. Two aspects need to be stressed. (1)Tc is smaller than the
fermion bandwidth by an order of magnitude. Hence, the charge fermions remain degenerate
with a well defined Fermi surface across the magnetic transition. (2) The magnitude ofTc

is quite reasonable. Thus for a bare bandwidth of 2 eV,Tc ranges from 20 to 40 meV for
0.14< x < 0.5. Of course, fluctuations would bring downTc somewhat.

Figure 1. Energy scales: plot of 2kTc/W ,
2µh/W and the Wf /W as a function
of doping x. Here W = 12t =
bare bandwidth,Wf = 12tf = fermion
bandwidth atTc and µh = is the hole
Fermi energy.

Recently, Millis et al [7] estimated a much larger value forTc although essentially
the same mean-field decomposition is implicit in their treatment [11]. The origin of the
discrepancy is easily understood. First, instead of solving the problem self-consistently,
they estimateTc from theHeisenbergmodel which has the same magnon spectrum. This is
not quite accurate since their is no exact equivalence between the two models. Secondly,
they use a two-fold degenerate level (two spinless charge fermions at each site). Now
the Fermi surface iselectron-like. Then Tc ∝ D ∼ (1 − x), whereasTc ∝ D ∼ x for
the non-degenerate case. Forx = 0.2, this alone gives a four-fold increase inTc for the
doubly-degenerate case. The issue of degeneracy is yet to be settled. The high-field Hall
effect seems to be consistent with a hole-like Fermi surface [12].

Spectral function.The physical electron is a composite object, and is thus a superposition
of pairs of charge fermions and spin bosons subject to momentum and energy conservation:
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ckωσ = (2SRNβ)−
1
2
∑

qν bqνσ fk−q,ω−ν , whereω and ν are the odd and even Matsubara
frequencies. The mean-field Green function is simply a convolution of the fermion and
boson Green functions [13]. For (x < 0.5) we can work with charge ‘holons’. Then the
spectral function is given by

A(kω) = mπ

SR

δ(ω + εk − µ)

+ 1

8π2SR

∫
d3q[f (εq−k − µ) + n(ωq + 3)]δ(ω − ωq − 3 + εq−k − µ) (6)

wheren(x) and f (x) are Bose and Fermi functions, andεk = −εf (k). Physically, each
term in the integral (sum) describes the propagation of a charge riding on a particular mode
of the core spins. The first term is associated with the condensate (spin-ordered) component
and clearly constitutes a coherent Fermi liquid. However, this is no ordinary Fermi liquid.
It represents spinless fermions with a spectral weight proportional to themagnetization
m(T), and thus weakens with increasingT and disappears atTc, as the spectral weight is
continuously transferred to the second term which corresponds to spin-waves. Below we
show that this term, which we callA1, is incoherent and has a number of unusual properties.

In the ordered state,3 = 0. Since (ωq > 0), it follows that, atT = 0, A1 is non-zero
only for ω > 0. This is because we can only create an excited boson atT = 0. Therefore,
the particle-hole symmetry near the Fermi surface, a property of ordinary Fermi liquids, is
violated. This is a consequence of broken time-reversal invariance and would be observable
in photoemission and tunnelling (density of states) measurements. The density of states is
given by

D(ω) = m

2SR

Dh(µ − ω)

+ 1

2SR

∫
dzDb(z)Dh(z + 3 + µ − ω)

[
n(z + 3) + f (z + 3 − ω)

]
(7)

where ω is measured relative to the Fermi surface, andDb and Dh are the boson and
fermion densities of states. The first term is the condensate contribution. SinceDb(z) is
non-zero only forz > 0, we see immediately that, atT = 0, the integrand contributes only
if ω > z > 0, exhibiting the particle-hole asymmetry. In the regionkT , ω � µ, the fermion
density of statesDh varies slowly with frequency and can be replaced by its value at the
Fermi level. AlsoDb(ω) = const2(ω)ω1/2 at low frequencies. Then both above and below
Tc we obtain,

D(ω) = Dh(µ + 3 − ω)

[
1

2
+ 1

2SR

φ(ω, T )

]
(8)

where φ is the symmetry violating contribution and has the scaling formφ(ω, T ) =
ω3/2g(ω−3

kT
). At T = 0, φ = 2(ω)(ω/ωm)3/2, whereωm is the maximum boson energy.

For T > 0, φ has the sameω3/2 form for ω � kT , but acquires a finite value forω60,
which vanishes exponentially asT 3/2e−β|ω| as ω → −∞. Precisely on the Fermi surface
(ω = 0), φ is temperature dependent and scales asT 3/2. These results follow from the
quadratic nature of the (ferromagnetic) spin-wave spectrum and spatial dimensionality of
the system.

The spectral function itself can be calculated analytically by using the quadratic
approximations for the fermion and boson spectra:εk ≈ tf (Q − k)2, ωq ≈ tbq

2. Let
� ≡ (1 − tb

tf
)(ω − 3 + εk − µ)/εk. Then the non-condensate part of the spectral function
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(A1) is given by

A1 = 2(1 − �)2(ωm − ω−)

16πStf tbβ|Q − k|
[

log
1 + e−β(ω1+3−ω)

1 + e−β(ω2+3−ω)
+ log

1 − e−β(ω2+3)

1 − e−β(ω1+3)

]
(9)

whereω1 = ω−, ω2 = min(ωm, ω+), ωm is the maximum boson energy and

ω± = 2tbtf εk

(tf − tb)2

[
1 − 1

2
� ± (1 − �)

1
2

]
.

Note thatω+ > ω− > 0. The quasiparticle peak, if it exists, would occur at� = 0.
At T = 0 only the first term in (9) contributes. It has no singularity and exists only for
ω > ω− > 0, exhibiting the lack of p–h symmetry. ForT > 0, this term just broadens out.
The second term in (9) contributes only forT > 0 and also has a non-Fermi liquid character.
In the ordered region (3 = 0) it has a logarithmic singularity∼ − logω− ∼ − log�2. But
as shown in figure 2, even this weak singularity disappears forT > Tc i.e., for a finite3 as
small as 0.0025W . Hence, aboveTc, the charge of the electron is itinerant and has a Fermi
surface. But the spin is localized, and the electron itself does not exist as a well defined
quasiparticle nor does it have a well defined Fermi surface. In other words, associated with
the magnetic transition there is a transition from a Fermi liquid to an incoherent state.

Figure 2. The incoherent part of the spectral
function A1 close to the Fermi surface. Below
the transition (solid line) it has a weak
logarithmic singularity which disappears above
Tc for 3 = 0.0025W (dotted line). The
parameterG ≡ 23/W . Energies are in units
of W/2.

The spectral function clearly shows a two-fluid character: electrons are transferred to
the incoherent component with increasingT . Obviously, an external uniform magnetic field
would have the opposite effect since it forces core spins to line up (even aboveTc). Hence
the spectral function is expected to show extreme sensitivity as a function of a magnetic
field.

Further work is needed in order to determine whether fluctuations (e.g., those that restore
the broken gauge symmetry) would remove the lack of coherence and restore a Fermi liquid
state aboveTc. Similarly, in order to address the question of metal-insulator transition, a
proper transport theory needs to be developed, which may involve inclusion of several
scattering processes, and possibly localization effects.

The Schwinger-boson technique can also be extended to the finiteJH case. In
particular, for large but finiteJH an antiferromagnetic ‘superexchange’ interaction between
neighbouring spins is obtained (by integrating out the antiparallel spins) withJAF =
2t2/(S2JH ). Based on our extensive analyses of the analogoust–J model, we expect
an insulating Neel state atx = 0 and a ferromagnetic metallic state at intermediatex, with
properties similar to the ones found here. We will discuss these issues further in a future
paper.
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Although, a microscopic transport theory is lacking, it is interesting to examine whether
the observed transport anomalies are compatible with a two-fluid model from a purely
phenomenological standpoint. Suppose, there are two parallel channels with densitiesnc and
ninc, and mobilitiesµc andµinc, respectively. The conductivity is of the formσ = σc +σinc

whereσc = nceµc andσinc = ninceµinc. It is assumed that (i)nc decreases with increasing
T , but increases with increasing magnetic field, and (ii)µc is metallic, butµinc � µc,
such thatσinc is non-metallic and is descriptive of the experiments aboveTc. (1) BelowTc,
σc dominates even ifnc ∼ ninc sinceµinc � µc. Thus the resistivityρ ∼ 1/σc remains
metallic. But close toTc, it rapidly goes over to 1/σinc, as observed, simply becausenc

vanishes asT → Tc. (2) Also, a reduction innc (rather than an increase in the scattering
rate) allowsρ to acquire very large values in the metallic state (belowTc) without violating
unitarity [14]. (3) Even a small magnetic field (a few tesla) causes a precipitous drop in the
observedρ, and shifts the resistivity peak by tens of degrees, an amount much larger than
the Zeeman energy. This behaviour is hard to reconcile with a one-component model, but
occurs naturally in a two-fluid system, since a magnetic field increasesnc. In the insulating
regime, introduction of even a small number of coherent electrons would cause a large
drop in ρ sinceµc � µinc. It would also cause a large shift in the resistivity peak which
arises becauseσc decreases andσinc increases withT . (4) The model is consistent with
the reported anomalous transfer of spectral weight in optical conductivity with increasing
temperature, from a a metallic (Drude) to an incoherent component [15]. Finally, we note
that extreme sensitivity to temperature and magnetic field has also been seen in the Hall
effect [12].

We stress that the preceding discussion is only suggestive. The author is grateful to
C Jayaprakash, T L Ho, P W Anderson and N P Ong for many useful discussions. Work
at Princeton was supported by a grant from NSF (DMR 9104873).
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