IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Phase transition in the double-exchange model: a Schwinger boson approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys.: Condens. Matter 8 L515
(http://iopscience.iop.org/0953-8984/8/37/002)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.206
The article was downloaded on 13/05/2010 at 18:39

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/37
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matt8r(1996) L515-L521. Printed in the UK

LETTER TO THE EDITOR

Phase transition in the double-exchange model: a
Schwinger boson approach

Sanjoy K Sarker

Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, Alabama 35487,
USA and Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey
08544, USA

Received 13 June 1996

Abstract. Local alignment of a conduction electron’s spin with core spins caused by strong
ferromagnetic coupling imposes a severe restriction on the Hilbert space. This is incorporated in
a representation in which the electron is a composite object. Within a mean-field approximation
we find a transition from a ferromagnetic metal to a paramagnetic state at a temp&raturEr,

the Fermi temperature, i.e., there is a separation of energy scales. The electron Green function
exhibits a two-fluid character: a Fermi liquid component associated with the ordered spins which
disappears aboVE., and an incoherent component with disordered spins which breaks particle-
hole symmetry. Implications for manganites, which exhibit very large magnetoresistance, are
discussed.

Recent discovery of very large magnetoresistance in [@a, MnO; (and other manganites)

[1, 2, 3] has revived interest in the double-exchange model [4-7]. Approximately in the
range 02 < x < 0.4, the low-temperature phase of the manganites is a ferromagnetic metal.
At a critical temperaturd,, there is a transition to a paramagnetic phase which appears to
be insulating. The large increase in resistivityZatand the enormous magnetoresistance
are linked to the transition and implies extreme sensitivity to external magnetic fields. The
important physical effects are believed to originate from the d orbitals of the manganese ions
which occupy the cubic sites of the perovskite structure. Eh@rbitals form a conduction
band containing + x electrons per site. The electron strongly interacts ferromagnetically
via the Hund's rule mechanism with th®e = 3/2 core spin formed from th&, orbitals.

We thus consider the ferromagnetic Kondo lattice Hamiltonian given by

HZ_ZIiJ‘";’TgCJG_JHZSi'Si' (1)
ijo i

Herec;, destroys ark, electron at site and the first term is the usual nearest-neighbour
hopping Hamiltonian withy;; = ¢. The second term describes the Hund's rule coupling
between the core spif; and the conduction electron spin density The nominal two-
fold degeneracy of thé&, orbitals could in fact be lifted by a coupling to the lattice. For
the most part we ignore the degeneracy, its effect will be discussed later.

In the largeJy limit, the conduction-electron spin adiabatically follows the core spins.
As elucidated by Anderson and Hasegawa [5], this induces a ferromagnetic correlation
between neighbouring spins in order to facilitate coherent propagation. However, the forced
alignment also removes a large part of the Hilbert space since at each site, doubly-occupied
and theantiparallel singly-occupied states are both projected out. More precisely, an
electron combines with the core spin to form two manifolds of total spift % with
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energies—3JyS and+3J4(S + 1), respectively. As/y — oo, the S — J and the doubly
occupied sectors are projected out. This restriction is far more stringent than that in the
infinite U Hubbard model where only double occupancy is forbidden, and dominates the
physics.

We derive an exact representation in which spins are treated as Bose fields that are
coupled to spinless charge fermions so that the physical electron is a composite object.
Within a mean-field (MF) approximation we find a transition from a ferromagnetic metallic
state to a paramagnetic state with reasonable valueg.fat Tr, i.e., there is a separation
of energy scales. We show, analytically, that the MF electron Green function exhibits
a two-fluid character: a Fermi liquid component associated with the ferromagnetically
ordered spin configuration, and an incoherent component associated with the disordered
spin configurations which breaks particle-hole symmetry. With increasing temperaiure (
there is a transfer of spectral weight to the latter, untillathe Fermi liquid component
disappears.

Functional integral representationConsider first the on-site problem with a classi&g)
pointing along some arbitrary direction. Lgl and g; be operators that destroy single
electrons with spins parallel and antiparallel $p, respectively. Ther;, are given by
linear combinations:

1
- J2S

whereb;, = r;,€% are complex numbers with b b, = 2S. If S; is expressed as
(S, 0, ¢) in spherical coordinates, then we can choose

Cio

[bio fi + sQN(0)]; _, 8il

0; .
rip = mcosi iy = «/ﬁsmi ¢i = biy, — Pir.

In the quantum casé;,;, becomes a time-dependent Bose field. Then it is convenient to
use functional integral techniques [7]. Note that the core spin variables can be expressed
as: S = bibiy, S7 = %(bj‘TbiT — b} b;y). This is nothing but the exact Schwinger boson
representation of the core spin [8, 9].

Clearly, the representation is valid for all;. Here we focus on the/y — oo
limit. Then we can ignore the upper (antiparallel) level (i.e. terms contaig)ngo that:
Cig = %bw fi wherec;, and f; are Grassman fields. The partition function can be written
as a functional integral with an action given by

P fz*fl * abia *8fl * 1 * *
A:/O df[;(l-i- T )b,-g ar T (f,- o Tl fi) t 55 > tiiblybis f; f,} @

ijo

where s is the chemical potential and the integrals over the Bose fields are to be
done subject to constraints’ b: b, = 2S. The action is invariant under the gauge
transformation: f; — f;€%; b;, — b;,e'¥. Hence, one of the Bose fields, shy, can
be chosen to be real. Then, written in terms of the polar variaifie8, ¢), the action
becomes identical to the one derived by Mikisal [7].

In essence, the electron has become a composite object. Its charge (dersify fi)
is carried by espinlesdermion field f, and its spin (density; = (f* fi/25)S;) is wedded to
the core spin and is carried by the Bose fields. The double-exchange mechanism is explicit
in the last term in the action (2) which describes hopping of a spinless charge characterized
by a fluctuating hopping parameteB;; /S, whereB;; = %Z b} b;, essentially measures

o 107,
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the nearest-neighbour ferromagnetic correlation and has a magnitude

|Bij| = S[co§ <9i ;9’) — sing; sing; sir? (d)" ;d),-)}?_

This is maximum (=S) for ferromagnetic alignmentd; = 6;; ¢; = ¢;. Note the similarity

with the infinite U Hubbard model. Physics is quite different, however [10]. In the present
case,the charge field is free.e., not enslaved to the spin-field by a projective constraint.
The representation is therefore natural since there is no freedom of choice of statistics (i.e.,
no slave boson).

Mean-field theory. We treat the constraints on the Bose fields on the average via a
Lagrange multiplierA. A Hartree—Fock decomposition then yields actions that are quadratic
in the charge and spin-fieldsd,,» = Af + A, + const. The facto(1 + (f* f;/25)) can
be absorbed by shifting; and rescaling the Bose fields so that they correspond to a spin
of renormalized magnitudeS — Sz = S¢ = S+ (1 — x/2). This is just the average total
spin at a site with - x electrons. The mean-field actions are then given by

p db; D
=/ d bf —% — Ab big | + 2o Y ti;bE by 3
Ab L t[Z(m T io >+2SRZ JZioc™] :| ( )

io ijo

P of; B
A= [Coe S (s )+ 5 S ] @

ijo

whereD = (f* f;) is the average ‘kinetic energy’ of charge ad= (B;;) is the average
value of short-range ferromagnetic correlation. Thus, although the bare problem has a single
energy scale (the bare bandwidth= 12r), the propagation of charge and spin is governed
by distinct energy scales as characterized by the hopping paramgters:tB/Sz and
t, = tD/2Sg, respectively. These scales dependlgrand their determination is important
from an experimental standpoint sin® can be in the eV range, the experimenifalis
only a few hundred degrees [1-3].

The fermion spectrum is simply a cosine bandk) = —2¢;(cosk, + cosk, + cosk;).
The parameteB is maximum (=Sg) in the ferromagnetic state and decreases with increasing
T, but must remain finite af,. since it measures onlghort-rangemagnetic correlations.
Hence, we conclude that (1) charge fermions are itinerant both below and above the
ferromagnetic transition and (2) the charge bandwidify, = WB/Sg, equals the bare
bandwidthW at T = 0, but decreases with increasifigas B decreases. (3) For fixed
Sr, there is a symmetry about = 0.5 (quarter filling), so we can restrict our attention
to x < 0.5. In this regime the Fermi surface is hole-like. To deternmihpewe need to
computeD which determines the Bose parameterFor x not too large, we use a quadratic
approximation for the hole spectrum to obtain

B x(6712x)2/3{ 57[2(kT)2}

D= 14+ —
X 10 +

12 Irer
whereer = (67°x)?? is the hole Fermi energy for a band with= 1. ThusD is quite
small, depends only om at7 = 0. Forx = 0.2, D ~ 0.1 atT = 0, and decreases with
increasing?. Therefore,,/t; = D/(2B) ~ D/(2Sg) < 1. Hence,T, must be much
smaller than the fermion bandwidth.

The Bose Hartree—Fock problem is identical to that for a s$pinHeisenberg
ferromagnet, characterized byemperature-dependeakchange constant =t D/(2BSg).
The Bose spectrum ig; = 61y, with y, = 1 — %(coskx + cosk, + cosk;). Long-range
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ferromagnetic order (along the direction) appears through a Bose condensation in the
k = 0 mode, with the magnetization (condensate density) given by

dk 1
(2n)3 efltd) — 1’

To obtain B we only need to replace 1 by, in the numerator. The equations have been
discussed in detail in [9]. Briefly, in the ordered regime~= 0 andm > 0. The ground-
state is ferromagnetic since @t = 0 both integrals vanish givingr = Sz and B = Sk.
By expanding the Bose spectrum we obtain the correct spin-wave theory results at low
temperaturesim = Sp — constT3 and B = Sk — constT3. Above T., m = 0, and
A «x €72 > 0, where£ is the correlation length over which spins are ordered. These results
depend only on the spin-wave spectrum and dimensionality, and are thus expected to be
valid.

We have solved the fermion—boson self-consistency problem numerically. The relevant
temperature scale ig.. Figure 1 shows, &7T./W, as a function of doping. Also shown are
the charge fermion bandwidtW;/W = t;/¢t, and 2./ W, evaluated af,, wherey is the
chemical potential for holes. Two aspects need to be stressedl,. {&¢)smaller than the
fermion bandwidth by an order of magnitude. Hence, the charge fermions remain degenerate
with a well defined Fermi surface across the magnetic transition. (2) The magnitde of
is quite reasonable. Thus for a bare bandwidth of 2 EViianges from 20 to 40 meV for
0.14 < x < 0.5. Of course, fluctuations would bring doWh somewhat.
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@ Figure 1. Energy scales: plot ofiZ,/ W,
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Fermi energy.

X
Recently, Milliset al [7] estimated a much larger value f@} although essentially

the same mean-field decomposition is implicit in their treatment [11]. The origin of the
discrepancy is easily understood. First, instead of solving the problem self-consistently,
they estimate, from theHeisenbergnodel which has the same magnon spectrum. This is
not quite accurate since their is no exact equivalence between the two models. Secondly,
they use a two-fold degenerate level (two spinless charge fermions at each site). Now
the Fermi surface i®lectron-like ThenT, «« D ~ (1 — x), whereasT, « D ~ x for
the non-degenerate case. ko 0.2, this alone gives a four-fold increase 1a for the
doubly-degenerate case. The issue of degeneracy is yet to be settled. The high-field Hall
effect seems to be consistent with a hole-like Fermi surface [12].

Spectral function.The physical electron is a composite object, and is thus a superposition
of pairs of charge fermions and spin bosons subject to momentum and energy conservation:
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Chos = (ZSRN;B)*% ququfk_q,w_u, wherew and v are the odd and even Matsubara
frequencies. The mean-field Green function is simply a convolution of the fermion and
boson Green functions [13]. Fok (< 0.5) we can work with charge ‘holons’. Then the
spectral function is given by

mim
R

1

bgzs. [ Falf €=+ nto, + A=y~ A+e -0 ©

8

wheren(x) and f(x) are Bose and Fermi functions, aed = —e,(k). Physically, each
term in the integral (sum) describes the propagation of a charge riding on a particular mode
of the core spins. The first term is associated with the condensate (spin-ordered) component
and clearly constitutes a coherent Fermi liquid. However, this is no ordinary Fermi liquid.
It represents spinless fermions with a spectral weight proportional tangnetization
m(T), and thus weakens with increasiffgand disappears &, as the spectral weight is
continuously transferred to the second term which corresponds to spin-waves. Below we
show that this term, which we call,, is incoherent and has a number of unusual properties.

In the ordered stated = 0. Since f, > 0), it follows that, atT = 0, A; is non-zero
only for w > 0. This is because we can only create an excited bos@h=a0. Therefore,
the particle-hole symmetry near the Fermi surface, a property of ordinary Fermi liquids, is
violated. This is a consequence of broken time-reversal invariance and would be observable
in photoemission and tunnelling (density of states) measurements. The density of states is
given by

D() = —o Dy(p — )
(Q)—TSR n\H —w

1

+2$/dsz(z)Dh(z+A+u—w)[n(z+A)+f(z+A—w)] (7)
R

where w is measured relative to the Fermi surface, dpg and D, are the boson and
fermion densities of states. The first term is the condensate contribution. Bjige is
non-zero only for; > 0, we see immediately that, @ = 0, the integrand contributes only

if w > z > 0, exhibiting the particle-hole asymmetry. In the regkdh v < u, the fermion
density of stated, varies slowly with frequency and can be replaced by its value at the
Fermi level. AlsoD,(w) = cons® (w)w/? at low frequencies. Then both above and below
T. we obtain,

D(w)=Dh(u+A—w)[;+2;¢(w, T)} (8)
R
where ¢ is the symmetry violating contribution and has the scaling fapw, T) =
0¥?g(2R). At T =0, ¢ = O(0)(w/w,)¥?, Wherew, is the maximum boson energy.
For T > 0, ¢ has the same®2 form for w > kT, but acquires a finite value fan.0,
which vanishes exponentially &%%e#ll asw — —oo. Precisely on the Fermi surface
(0 = 0), ¢ is temperature dependent and scales'd2. These results follow from the
guadratic nature of the (ferromagnetic) spin-wave spectrum and spatial dimensionality of
the system.

The spectral function itself can be calculated analytically by using the quadratic
approximations for the fermion and boson spectep:~ #/(Q — k)?, wy A t,q°. Let
Q=>1- ;7”)(0) — A + € — ) /ex. Then the non-condensate part of the spectral function
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(A,) is given by
Ol - )0 (v, —w_) 14 g Plrth-o) 1— e Platd)
A= I + log
167 StetyB1Q — k| 1+ e BlwztA-w) 1 — e Blmtn)
wherew; = w_, wp, = Min(w,,, 1), w, is the maximum boson energy and

oy = Zt”fe"[l— lota- Q)é}.

(tr — 15)? 2
Note thatw; > w_ > 0. The quasiparticle peak, if it exists, would occurSat= 0.
At T = 0 only the first term in (9) contributes. It has no singularity and exists only for
o > w_ > 0, exhibiting the lack of p—h symmetry. F@r > 0, this term just broadens out.
The second term in (9) contributes only fBr> 0 and also has a non-Fermi liquid character.
In the ordered regionA = 0) it has a logarithmic singularity — logw_ ~ —log Q2. But
as shown in figure 2, even this weak singularity disappear® fer T, i.e., for a finiteA as
small as 00025W. Hence, abovd,, the charge of the electron is itinerant and has a Fermi
surface. But the spin is localized, and the electron itself does not exist as a well defined
guasiparticle nor does it have a well defined Fermi surface. In other words, associated with
the magnetic transition there is a transition from a Fermi liquid to an incoherent state.

©)
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Figure 2. The incoherent part of the spectral
function A; close to the Fermi surface. Below
the transition (solid line) it has a weak
logarithmic singularity which disappears above
0 | | : T, for A = 0.0025¥% (dotted line). The

! i ] i 1 L
=50 -.40 =30 =20 =70 .00 .10 .20 .30 .40 .50 parameteiG = 2A/W. Energies are in units
FREQUENCY of W/2

SPEC FUNCTION

N

-

The spectral function clearly shows a two-fluid character: electrons are transferred to
the incoherent component with increasifig Obviously, an external uniform magnetic field
would have the opposite effect since it forces core spins to line up (even d@ppvdence
the spectral function is expected to show extreme sensitivity as a function of a magnetic
field.

Further work is needed in order to determine whether fluctuations (e.g., those that restore
the broken gauge symmetry) would remove the lack of coherence and restore a Fermi liquid
state abovel,.. Similarly, in order to address the question of metal-insulator transition, a
proper transport theory needs to be developed, which may involve inclusion of several
scattering processes, and possibly localization effects.

The Schwinger-boson technique can also be extended to the flpitease. In
particular, for large but finite/; an antiferromagnetic ‘superexchange’ interaction between
neighbouring spins is obtained (by integrating out the antiparallel spins) ¥jth =
2t2/(5%Jy). Based on our extensive analyses of the analogeusmodel, we expect
an insulating Neel state at= 0 and a ferromagnetic metallic state at intermedigtevith
properties similar to the ones found here. We will discuss these issues further in a future
paper.
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Although, a microscopic transport theory is lacking, it is interesting to examine whether
the observed transport anomalies are compatible with a two-fluid model from a purely
phenomenological standpoint. Suppose, there are two parallel channels with depsitids
nine, and mobilitiesw,. and ., respectively. The conductivity is of the foren= o+ i,
whereo, = n.ep. andoj,. = niceptine. It is assumed that (. decreases with increasing
T, but increases with increasing magnetic field, and gii)is metallic, butu;,. < p.,
such thats;,. is non-metallic and is descriptive of the experiments akiivg1l) Below T,

o, dominates even ifi, ~ n;, Since i, <K . Thus the resistivityp ~ 1/0, remains
metallic. But close tdr,, it rapidly goes over to As;,., as observed, simply becausg
vanishes ag — T,.. (2) Also, a reduction im, (rather than an increase in the scattering
rate) allowsp to acquire very large values in the metallic state (beflpywithout violating
unitarity [14]. (3) Even a small magnetic field (a few tesla) causes a precipitous drop in the
observedp, and shifts the resistivity peak by tens of degrees, an amount much larger than
the Zeeman energy. This behaviour is hard to reconcile with a one-component model, but
occurs naturally in a two-fluid system, since a magnetic field increases the insulating
regime, introduction of even a small number of coherent electrons would cause a large
drop in p sincew. > wine. It would also cause a large shift in the resistivity peak which
arises because, decreases and;,. increases withl’". (4) The model is consistent with

the reported anomalous transfer of spectral weight in optical conductivity with increasing
temperature, frm a a metallic (Drude) to an incoherent component [15]. Finally, we note
that extreme sensitivity to temperature and magnetic field has also been seen in the Hall
effect [12].

We stress that the preceding discussion is only suggestive. The author is grateful to
C Jayaprakash, T L Ho, P W AndersondaN P Ong for many useful discussions. Work
at Princeton was supported by a grant from NSF (DMR 9104873).
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